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Unsupervised anomaly detection 
with generative adversarial 
networks in mammography
Seungju Park 1,6, Kyung Hwa Lee 2,6, Beomseok Ko 3* & Namkug Kim 4,5*

Breast cancer is a common cancer among women, and screening mammography is the primary tool 
for diagnosing this condition. Recent advancements in deep-learning technologies have triggered 
the implementation of research studies via mammography. Semi-supervised or unsupervised 
methods are often used to overcome the limitations of supervised learning, such as manpower and 
time, for labeling in clinical situations where abnormal data are significantly lacking. Accordingly, 
we proposed a generative model that uses a state-of-the-art generative network (StyleGAN2) to 
create high-quality synthetic mammographic images and an anomaly detection method to detect 
breast cancer on mammograms in unsupervised methods. The generation model was trained via only 
normal mammograms and breast cancer classification was performed via anomaly detection using 
50 breast cancer and 50 normal mammograms that did not overlap with the dataset for generative 
model learning. Our generative model has shown comparable fidelity to real images, and the anomaly 
detection method via this generative model showed high sensitivity, demonstrating its potential 
for breast cancer screening. This method could differentiate between normal and cancer-positive 
mammogram and help overcome the weakness of current supervised methods.

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among  women1,2. 
Mammography is regarded as the most effective screening tool for breast cancer detection and diagnosis. Screen-
ing mammography has been shown to reduce the rate of death from breast cancer by 25% in women between 
the ages of 50 and 69 years based on the results of several randomized clinical  trials3–6. Recent studies have 
observed reductions in breast cancer mortality in service screening programs consistent with those observed 
in the randomized trials, although the use of screening mammography remains controversial due to concerns 
regarding methodological limitations in some of the randomized  trials7,8. Moreover, Kalager et al. investigated 
the availability of screening mammography via valid comparison groups instead of historical control participants 
to consider chronologic trends associated with advances in breast cancer awareness and  treatment9. The authors 
concluded that screening mammography was still associated with a reduction in the rate of death from breast 
cancer, but screening itself accounted for only about a third of the total reduction.

Low contrast between cancerous lesion and normal breast tissues is one of the most significant challenges of 
mammography, which makes it difficult for radiologists to interpret the results. Computer-aided diagnosis and 
detection of abnormalities in mammography have been introduced and play an important role in breast cancer 
 screening10,11. Furthermore, recent advances in machine learning and deep-learning (DL) networks have become 
powerful techniques by enabling automatic feature extraction and detection in various fields as well as in medi-
cal  images12–16. Recent studies using DL methods, specifically convolutional neural networks with supervised 
learning, improved the ability of radiologists to detect even the smallest breast cancers at their earliest stages, 
thus alerting radiologists when further analysis is  needed17–22. Despite the superior performance, supervised 
methods are vulnerable in evaluating data that are completely different from the data the model encounters 
during training. In addition, labeling large amounts of training data for supervised learning requires enormous 
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manpower and time resources. Several studies with unsupervised training have been introduced to alleviate the 
burden of manual  annotation23,24.

Recently, various DL-based generation models for high-resolution images have been  introduced25–31. Espe-
cially, generative adversarial networks (GANs) have been developed and improved the synthetic performance 
for high-resolution  images27. Several studies have applied GAN to generate realistic medical images from various 
imaging modalities, such as X-ray, computed tomography (CT), and magnetic resonance  imaging32–35. Fur-
thermore, studies have been published that not only generate medical images using GAN but also use these 
synthesized images for data augmentation or apply them to anomaly  detection36–40. In the current study, we 
generated realistic normal mammographic images using the state-of-the-art generation network  StyleGAN231 
and developed an unsupervised anomaly detection method to detect breast cancer without the need to collect 
or annotate cancer datasets.

Results
Figure 1 shows the examples of generated normal mammographic images from the styleGAN2 model. The 
best Frechet inception distance (FID)41 and inception  score42 were 4.383 and 16.67, respectively. The multiscale 
structural similarity for image quality assessment (MS-SSIM)43 and average value of peak signal-to-noise ratio 
(PSNR)44 of the synthesized images were 0.39 and 31.35, respectively. The overall breast morphologies and 
internal parenchymal structures of synthetic images were highly realistic. However, unusual noise-like patterns 
were noticed inside the parenchymal structure of the breast in the magnified view, which were not identified in 
real mammographic images (Fig. 2).

Figure 3 shows cases of true-positive (TP), false-negative (FN), false-positive (FP), and true-negative (TN) of 
breast cancer detection using anomaly detection method. For each of the four cases depicted, the images in each 
row represent the real image, one of the nine synthetic images that was most similar to the real image (projected 
image), and the difference map between the real image and the average of nine synthetic images.

Table 1 shows the classification results for breast cancer using anomaly detection method in according to 
the number of synthetic image seeds created per image. The use of nine different seeds provided the highest 
performance with accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value 
(NPV), and the areas under the receiver operating characteristic (ROC) curve (AUC) were 64.0%, 78.0%, 52.0%, 
61.4%, 70.2%, and 70.0%, respectively. Figure 4 demonstrates a ROC curve of classification performance for breast 
cancer. A histogram of anomaly scores in breast cancer and normal patients is depicted in Fig. 5.

Figure 1.  Examples of generated images from the StyleGAN2 model. Each Frechet inception distance score is 
10.425, and 4.383 for (a) and (b), respectively.
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Discussion
In this study, we generated highly realistic mammographic images with a state-of-the-art DL-based generative 
network using normal mammograms and developed an unsupervised anomaly detection method for breast 
cancer detection. The generation performance was measured as FID score of 4.383 and inception score of 16.67, 
respectively. The AUC, sensitivity, and specificity of the classification performance for breast cancer detection 
were 70.0%, 78.0%, and 52.0%, respectively.

Recently, DL-based various generation models were introduced. In particular, as GANs were published in 
 201445, they have been a hot research topic, and many strategies and GAN variants have been  proposed28,30,31,46. 
GANs consist of two neural networks, i.e., generator and discriminator networks. The generator produces syn-
thetic images from random noise vectors and tries to fool the discriminator, whereas the discriminator tries to 
distinguish the fake samples from the real samples. Kerras et al. demonstrated that the style-based generator 
architecture for GANs (StyleGAN) was very effective in generating high-resolution images by learning both 
global attributes and stochastic  details30. The StyleGAN model mapped the latent space Z into the W space via 
a nonlinear mapping network and then merged into the synthesis network via adaptive instance normaliza-
tion at each convolutional layer. In the StyleGAN2 model, the authors redesigned the generator normalization, 
revisited progressive growing, and regularized the generator to encourage good conditioning in the mapping 
from latent codes to images to remove characteristic blob-shaped artefacts and improve image  quality31. In the 
current study, the StyleGAN2 model was used to generate synthetic mammographic images. Optimal training 
was given through visual observation of synthesized mammographic images and monitoring of FID and incep-
tion scores while adjusting the learning rate. The model initially generated a coarse shape of the breast, and as 
training progressed, it generated the complex parenchymal tissues inside the breast.

GANs have been observed to suffer from mode collapse, in which the generator learns to generate examples 
from only a few modes of the data distribution and misses many other modes, even if examples of the missing 
modes exist throughout the training  data47,48. In this study, we observed that the model falls into a mode collapse 
in which nothing is generated when training continues after the model shows optimal generation performance. 
The optimal training point was established through visual observation and monitoring the lowest FID score to 
use the unsupervised anomaly detection method using the generated normal mammographic images. Some 
synthesized images showed unusual noise-like patterns in parenchymal structure within the breast that were 
not identified in real mammographic images, although most of the generated images showed similar fidelity 
to real mammographic images. In the StyleGAN2 architecture, geological features are learned from coarse-to-
fine scale through a progressive training  process31 in which per-pixel noise was injected after each convolution 
to compensate for the loss of information compression, thereby capturing high-variance details. The unusual 
noise-like patterns might have been caused by the network structure. This suggests that the highly complex 
and variable parenchymal structures within the breast are too fine to be trained as a style and thus, may not be 
trained efficiently.

Anomaly refers to an observation that is significantly out of the concept of normality, and anomaly detection 
is a technique for detecting a state that is not  normal49. For anomaly detection, a one-class classification method 
that learns a hypersphere so that general normal features gather at one point, or a feature matching method that 
determines an anomaly based on the distance or probability distribution of features can be used. Schlegl et al. 
first developed a method using GANs for anomaly detection (AnoGAN)38. The authors computed anomaly scores 
based on latent space mapping using a deep convolutional GAN trained only with normal data. This method 

Figure 2.  Unusual noise-like patterns in the synthesized mammographic images.
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Figure 3.  Examples of anomaly detection with real mammographic image as an input (first image), one of the 
most similar nine normal synthetic mammographic images as an output (second image), and difference map 
between the real image and the synthetic image (last image). (a–d) Show true-positive, false-negative, false-
positive, and true-negative case in order.

Table 1.  Comparisons of performance on classification for breast cancer with the number of seeds per image. 
1 Number of seeds of synthetic images created per image. Data are presented as n (%). PPV positive predictive 
value, NPV negative predictive value, AUC  area under the receiver operating characteristic curve.

No.1 Accuracy Sensitivity Specificity PPV NPV AUC 

1 61.0 74.0 48.0 58.7 64.9 66.6

9 64.0 78.0 52.0 61.4 70.2 70.0

16 63.0 78.0 48.0 60.0 68.6 67.8
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has recently been applied as a method for finding disease-related anomalies in various medical  images39,40,50,51. 
Lee et al. developed an anomaly detection algorithm with a deep generative model trained on brain CT images 
of healthy individuals for detecting emergency  cases50. They demonstrated that the median wait time was sig-
nificantly shorter, and the median radiology report turn-around time was significantly faster with their anomaly 
detection algorithm in a clinical simulation test of an emergency cohort. In this study, we developed an unsuper-
vised anomaly detection method for detecting breast cancer using synthetic normal mammographic images with 
a deep generative model. To the best of our knowledge, this paper was the first study to classify breast cancer on 
mammographic images using unsupervised anomaly detection algorithm, demonstrating its preliminary results. 
Although the classification performance was not yet high enough and the validation dataset was small, our results 
showed the potential of the method to classify breast cancer using the unsupervised method.

Recently, several supervised DL-based studies for breast cancer detection in mammographic images have been 
 introduced10,19,21,22,52–55. In their study, artificial intelligence (AI) algorithm showed better diagnostic performance 
in breast cancer detection compared with radiologists, and radiologists performed significantly better when 
assisted by  AI19,21,22,53–55. Despite these superior performances, the supervised method has some limitations. First, 
it can be difficult for the network to classify new unseen data that has not been learned during training, even if it 
contains some artefacts that physicians can easily identify, resulting in the network inferring inaccurate results. 
Second, a large amount of annotated data is inevitably required. Particularly, abnormal medical data are usually 
scarce compared with normal data, and only trained medical experts can annotate data in most cases. Kim et al. 
collected annotated data involving over 150,000 mammograms, including breast cancers, benign masses, and 
normal breasts, in training the classification network in a supervised  manner21. Semi-supervised or unsuper-
vised methods were studied as useful alternatives to supervised methods to overcome drawbacks in a supervised 
 learning23,38–40. In this study, we were able to detect breast cancer using an unsupervised method without having 
to collect and annotate large amounts of cancer datasets. This method could be used as an additional screening 
tool or alarm system to compensate for the deficiencies in supervised methods.

Results were compared according to the number of seeds used to generate the images to reduce the proportion 
of false-positive cases that are detected as cancer in areas with high parenchymal density in the breast, although 
no cancer is actually present. The best performance was achieved when nine different seeds were used, with AUC, 
sensitivity, and specificity of 70%, 78%, and 52%, respectively. This result indicates that using 1 seed may be rela-
tively insufficient to remove false-positive regions, whereas using 16 seeds may result in poor performance when 

Figure 4.  The receiver operating characteristic curve of classification for breast cancer.

Figure 5.  Histogram for anomaly scores.
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averaging difference maps due to the large number of different images. In addition, benign diseases were not 
excluded when mammographic images were collected in training the generation model, which may have led to 
an increase in false-negative cases as some benign masses look similar to cancer. To overcome these weaknesses, 
future studies could consider methods to improve the performance of projection on test images and stepwise 
models that can reduce the number of false-negative cases by first excluding benign masses. The staged model 
can be implemented by filtering abnormal cases using a model trained with only normal mammograms without 
benign masses followed by cancer cases using a model trained with only mammograms with benign masses.

This study had several limitations. First, only craniocaudal views of mammograms with limited resolution 
were used for the generation of images and detection of anomalies. Therefore, generation with mediolateral-
oblique views of mammograms and full high-resolution images (i.e., 2294 × 1914 pixels), which are commonly 
used in the real clinical field, would allow for more accurate anomaly detection. Second, we could not conduct 
the image Turing test by radiologists to evaluate the qualitative performance of the generated images. Particularly 
in medical images, evaluation for qualitative performance might be more crucial than quantitative evaluation, 
which only measures differences in the density between two distributions from real image and fake image in the 
high-dimensional feature space. Finally, our preliminary results for breast cancer detection showed insufficient 
performance for clinical application. Therefore, improvements through more similar projections for cancer 
images and a staged generation model to distinguish benign cases should be considered to investigate its potential 
as an additional screening tool.

In conclusion, this study proposes a generative model that uses StyleGAN2 model for the generation of high-
quality synthetic mammographic images and the anomaly detection method for the detection of breast cancer 
on mammograms in an unsupervised manner. Our generative model has shown comparable fidelity to real 
images, and the anomaly detection method via this generative model trained with only normal mammograms 
could differentiate between normal and cancer-positive mammograms. This method could provide additional 
information and help overcome the weakness of current supervised methods for breast cancer detection.

Methods
Data collection. We retrospectively reviewed electronic medical records of patients with breast cancer who 
underwent mammography in Asan Medical Center between January, 2008 and December, 2017. Normal mam-
mograms were collected from mammograms of normal breast contralateral to cancer and their follow-up mam-
mograms. Mammograms containing surgical clips were excluded from this study because the clip’s sudden high 
intensity could significantly adversely affect the generative performance of the GAN. Finally, this study included 
105,948 normal mammograms from 22,848 patients for training the generation model. Only craniocaudal views 
of the mammographic images were used for model training. Additionally, we collected datasets to evaluate the 
anomaly detection method for breast cancer detection. Fifty mammograms of breast cancer, which were patho-
logically staged to T stages 1 to 4, according to the 8th edition of the American Joint Commission on Cancer 
 Staging56, and 50 normal mammograms that did not overlap with those used to train the generative model were 
obtained. This retrospective study was conducted according to the principles of the Declaration of Helsinki 
and was performed in accordance with current scientific guidelines. The protocols of this study were approved 
by the Institutional Review Board of Asan Medical Center (IRB number: 2017-1341), and the requirement for 
informed consent from patients was waived due to the retrospective nature of the study.

Generation of mammographic images. GANs consists of two neural networks, generator and discrimi-
nator networks, where the generator’s cost encourages it to generate samples that the discriminator incorrectly 
classifies as real, while the discriminator’s cost encourages it to correctly classify data as real or  fake27. The pro-
cess can be described as a minimum–maximum game shown in the following function (1):

where x is a “real” sample from the actual dataset, represented by distribution  Pdata(x), and z is a “latent vector” 
sampled from the distribution  Pz(Z), which is typically noise. The StyleGAN model mapped the latent space Z into 
the W space via a nonlinear mapping network (an eight-layer MLP) and then merged into the synthesis network 
via adaptive instance normalization (AdaIN) at each convolutional  layer57. A gaussian noise is added after each 
convolutional layer before the AdaIN layer. AdaIN was restructured for weight demodulation in the StyleGAN2 
model, and progressive growth was removed because it introduced small artefacts during image generation.

All mammograms of right-sided breasts were aligned to the left by flipping along their vertical axis to use 
only left-sided mammograms for training efficiency to train the StyleGAN2 model with mammographic images. 
The windowing level of each image was adjusted using a center and a width value of each image from digital 
imaging and communications in medicine (DICOM) header information to most closely match the image that 
doctors see in the image viewer. The original 12-bit grayscale DICOM images were converted into 8-bit grayscale. 
The size of the original image (2294 × 1914 pixels) was then changed to a modified size (2294 × 2294 pixels) by 
padding zeros on the right edge and downscaled to 512 × 512 pixels for training efficiency. A publicly available 
official implementation of StyleGAN2 via Tensorflow in Python was used. The model was trained using the 
original NVIDIA implementation on a computer with a Linux operating system. The learning rate and batch 
size were set at 0.001 and 8, respectively, and other parameters were fixed as default values while training. A 
quantitative analysis was conducted to evaluate the qualities of generated images. We used the FID that measures 
differences in density of between two distributions in the high-dimensional feature space of an  InceptionV358 
classifier, which compares the activation of a pretrained classification network on real and generated images. In 
addition, the inception score, MS-SSIM, and PSNR were measured. MS-SSIM is used to measure the diversity of 
generated image, and the similarity between two images is computed based on image pixels and structures. The 

(1)minGmaxDV(D, G) = Ex∼Pdata(x) [logD(x)] + EZ∼Pz(Z) [log(1− D(G(z)))],
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mean MS-SSIM score was measured between randomly selected pairs of synthetic-to-synthetic images. In this 
work, 50 image pairs were used randomly to measure the MS-SSIM score. In addition, PSNR denotes the ratio 
between the maximum intensity value to the present noise value. Greater value of PSNR indicates less amount 
of noise, which means the synthetic image has closer resemblance to the real image. We used 50 image pairs 
of real-to-projected images. We monitored the training process (i.e., training losses, FID score, and generated 
images) using Tensor Board to determine whether the StyleGAN2 was properly trained. The training took 64 h 
with two Tesla v100-sxm2-32 GB graphic processing units.

Cancer detection with an anomaly detection method. Anomaly detection method aims to use a 
standard GAN, which was trained only on positive samples, to learn mapping from the latent space representa-
tion z to the realistic sample x̂ = G(z) , and use this learned representation to map unseen samples back to the 
latent space. Training GAN with normal samples alone makes the generator learn the manifold X of normal 
samples. Given that the generator learns how to generate normal samples, the difference between the input and 
the reconstructed image will highlight the anomalies. We yield normal synthetic images that were most similar 
to the test image with different seeds on the latent space of the StyleGAN2 by minimizing a perceptual loss. We 
tested 1, 9, and 16 seeds to find the optimal number of seeds to minimize the false-negative regions. For 9 and 16 
seeds, one average image was obtained. Anomaly score was calculated by summing the difference maps between 
real and test images, which were then divided by the area of each breast. Finally, a threshold for the anomaly 
score that could classify normal and cancer images was determined by the threshold of the Youden J index. Fig-
ure 6 illustrates the overall workflow.

We evaluated the classification performance using AUC, accuracy, sensitivity, specificity, PPV, and NPV. The 
AUC was obtained to reflect the overall accuracy of the model. Equations (2)–(6) show the formulas of each 
metric used.

(2)Accuracy = (TP + TN)/(TP + TN + FP + FN)

(3)Sensitivity = TP/(TP + FN)

(4)Specificity = TN/(TN + FP)

Figure 6.  Workflow of classification for breast cancer using anomaly detection method.
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Data availability
The datasets are not publicly available because of restrictions in the data-sharing agreements with the data 
sources. Ethics approval for the deidentified slides used in this study will be allowed upon request from the 
corresponding authors.
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